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Abstract:- This study presents the Laplace substitution method, which is a unique technique
for finding exact or approximate solutions to linear fractional differential equations with mixed
partial derivatives. This approach is simple, practical, and very successful for solving such
problems. It provides a dependable foundation for tackling intricate problems with fractional
derivatives and mixed partial terms. We provide three examples to show its usefulness and
efficiency of the method. The findings demonstrate the method's simplicity and accuracy,
making it a useful tool for solving linear fractional differential equations with mixed partial
derivatives.
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1. Introduction

The study of fractional calculus has received much interest from researchers and applied
mathematicians because of its wide range of applications in domains such as mathematics,
science, engineering, plasma physics, material mechanics, biology, p, finance, and chemistry
[1-6]. Analytical and numerical approaches such as the Laplace transform, Fourier transform,
fractional Dirac operator [7], and Elzaki transform [8] have been used to solve linear fractional
differential equations. Iterative approaches for nonlinear equations, including the Adomian
decomposition and variational iterative methods, are successful. Because many fractional-
order partial differential equations do not have accurate analytical solutions, approximation and
numerical procedures, such as the fractional complex transformation [9], Homotopy
perturbation method [10], and generalised differential transform method [14], are widely
utilised.

This work offers the Laplace Substitution Method, a unique and fast approach for solving linear

fractional differential equations with mixed partial derivatives. Dr. S. S. Handibag and Dr. B.
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D. Karande [16] developed this approach for partial differential equations. Still, it has
succeeded for both linear and nonlinear equations, including higher-order and
integrodifferential forms. Its simplicity, low computing effort, and accuracy make it a viable
alternative to current approaches.

The work is organised as follows: Section 2 introduces the essential concepts and theorems
needed for the research. Section 3 describes the Laplace Substitution Method for linear
fractional differential equations with mixed partial derivatives. Section 4 uses examples to
explain how the approach may be applied. Finally, Section 5 concludes the paper with a

summary of findings and remarks.
2. Basic definitions

A large amount of literature is available on different definitions of fractional derivatives.
The following section describes fractional calculus theory's definitions, theorems, and

characteristics [17].

Definition 2.1: For the case of Riemann-Liouville, we have the following definition:

DE(F()) = r e [y e = "1 f(D)at 2.1)
where ' T' " denotes gamma function, which is Mellin transform of exponential Function and is
defined as

Cy=f, t¥le™t dt Re [y] > 0. (2.2)
Definition 2.2: The fractional order derivative of Function x#, 8 > -1 is given as,

Dy () = T L) ) 2.3)

Definition 2.3: The Laplace transform of Fractional R-L derivative is

L{Dy (F (x))} = s*F (S) — XRZ§s*Dy*"1(0) ,n-I<x<m, (2.4)
where F(S) = L{(F ()} = [ e 'F (t)dt

Theorem: Let f, g be a—differentiable at a point # > 0.

D*(af + bg) = aD*(f )+ bD*(g), for all a, b € R (2.5)

3. Laplace Substitution method:

The general form of linear fractional differential equations involving mixed partial derivatives
with initial conditions is below.

Lu (x,t) +Ru (x,t) =h (x,t) (3.1)
Dy=1(0,t)=ci, Dy~2 (0,t)=c2,..., Dy (0,t) ) = ca (3.2)
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& DI (x,0)=b1, DI (x,0)=ba,...,D{ " (x,0)= by (33

h L_ 6°(+‘8
where L= ——,
[n-I<x<n & n-I< [ <nJ

We can write (1) in the following form,

—azi’;(t’;t) +Ru (x,t)=h (x,1)

2 (%) +Ru (x,t)=h (x,t)
Substituting aﬁgt(gf't) =U (x,t) in (4), we get,
"“;’;;"” +Ru (x,t)=h (x,t)

Taking Laplace transform of (5) w. r. t. x, we get,

s¥U (s,t) = s°Dy1(0,t) — sDy72(0,t) .....— s™ 1 Dy (0,8) =
Lx {h' (x) t) — Ru (X, t)}
From (2) Dy~1 (0,t) =c1, Dy ™™ (0,t) =ca, Dy~™(0,t) =cn

Equation (6) becomes,
s®U(s,t) —c; —scp —+..—s" ¢, =L, {h(x,t) — Ru(x,t)}
s*U(s,t) =c;+s+-..+s" ¢, + L, {h (x,t) — Ru (x,t)}

C, Cn

sX—Nn+1

U(s,t) = C— + + = Ly {h (1) = Ru (x,£)}

Taking Inverse Laplace transform w. r. t. x on both sides, we get,

Ru (x, t) is a group of remaining linear terms and h(x, t) is the source term.

(3.4)

(3.5)

(3.6)

Ulx,t) = Lyt {:—; + sg—zl ot Sofgﬂ + Sia L, {h(x,t) — Ru (x,t)}

U(x,£) = S 4 X S {i L, {h (6 t) — Ru (x, t)}} 3.7)
But U(x,t) = aﬁg‘t(;"t),

B B G St 3 - M) 08

Taking Laplace transform of (8) w. r. t. £ on both sides, we get,

C, x*—1 C, x* =2
+

_ B—k—1 _
sPu(x,s) — YRz Sk D: (x,0) = Lf{ Ta r(a-1)

L;! {Sia Ly th (x,t) = Ru (x, t)}}}

CpxXM

'a—n+1)
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<=1
594 25) = %D (5,0) = D 205,00 = 57 D ) = L f S5 4
C, x*~2 Cpx™—N _ 1
2 R Tl {S_a Le {h (x,t) — Ru (x, t)}}} (3.9)
p-1 = b, DF? _ p-n _
From (3) D, (x,0) =by, D; “(x,0) = by, D" (x,0) =b,

Equation (9) becomes,

cy x*1 " Cpx* 2 Cpx™~T

B — b, — — s lp = —nz
sPu(x,s) — by —sby .....— s""'by Lt{ — -y i P

sPu(x,s) = by + sby ...+ s™ b, + 1L, {% % + . + —rif::) +
Ly {s% Ly {h (x,t) — Ru (x, t)}}}
L {L;1 {Si Ly {h (x,t) — Ru (x, t)}}} (3.10)
Taking Inverse Laplace transform w. r. t. t of (9) on both sides, we get,
iy ¢ s 3 B + e+ A

L, { L {Si Ly {h (x,t) = Ru (x, t)}}}}

U(x,t)=

bytP-1  p,tF=2  pytP T + th [clx“‘1 cp x* 72
rg rg-1 7 r(g-n+1)) r@E-ul re Tr@-1

nx* T _ 1 1 {1 . .

+ ﬁ] +L;t {s_ﬁ L, {Lxl {s_“ L, {h (x,t) — Ru (x, t)}}}} is the required
solution of equation (1).

4. Applications:

%tB u (x,t) _

Example 1: Pl 0 4.1)

with initial conditions

DF1(0,t) = ¢4, DF2(0,t) = Cgpunenn Dy7™(0,t) = cp,


http://www.jcsonline.in/

Available online at www.jcsonline.in Journal of

Current Science & Humanities

CURNAL OF cLmmenT

sENCE AD T
Impact Factor-2.05

13 (1), 2025, 01-12

and D’ 7' (x,0) = by, DF2(x,0) = b,, .....,DF "(x,0) = b,,
where c;is either constant or function of 7 and b; is either constant or function of x

Let us assume

aPfu U
2F U Dm0 (4.2)

which is a homogeneous fractional differential equation.
Taking Laplace transform on both sides of equation (4.2) w. . t. x,

s¥U (s, t) — Xrzg sk DE*=1(0,t) = 0

C2 Cn

C
UGs,0) = ot gaer + ooty (4.3)
Taking inverse Laplace transform on both sides of equation (4.3) w. r. t. x,
Pu g x* 1 a2 Cpx* ™
atB ~  Ta + I(a-1) L F(a-n+1) “4-4)
Taking Laplace transform on both sides of equation (4.4) w. r. t. t,
B _yn-1 k pB-k-1 _ {c1 X exX? cnx*" }
sPu (x,s) — Xp=o s D; (x,0) =L, —+ (aT) + -+ r—
1(cx*°1 ¢y a2 Cpx* "
B — b, —sh, —-e—gn-1p =_11 2 +o
sPu(x,s s S .
(,8) = by = sb, ""S| Ta T(a-1) Fla—n+1)
_ by b, bn 1 {cl x71 oy x%T2 cn x“‘n“}
uls) =g tgat tgmm o A e
Taking inverse Laplace transform on both sides of the above equation w. r. t. ¢,
__ by tPt  pyth2 by tBT th {cl PG cp x%72 Cpx* M
ulet) ==+t o T U e r(a-1) ' F(a—n+1)}
(4.5)

The above equation (4.5) solves the problem (4.1).

Casel]—-¢;=0,b;=0,1<i<n

u(x,t)=0 which is a trivial solution.
Casell]—c;=0,b; =1,1<i<n

L L thm th- . .
u(x,t) = T + TGO + -+ TG — 2k=1Tg D - The graphical presentation of

(45 fora=13andp=1.61isin Fig 1.

Caselll]—c;=t,h;=0,1<i<n
n thoc—k

t
u(xt) = r(B+1) “k=1r(a—k+1)

The graphical presentation of (4.5) for a =13 and p=1.6

is given in Fig 2.
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The graph of this expression is:
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Fig:1 Foro=1.3and B =1.6 Figl2 Foro=13and $=1.6
Example 2:
B u(xt)
ox< ot (4.6)
with initial conditions, D$~1(0,t) = ¢;, DF2(0,t) = ¢y, ..., DFT(0,t) = cp,
and DF 7' (x,0) = by, D’ %(x,0) = by, .....,DP " (x,0) = by,

where c; is either constant or a function of 7 and b; is either constant or a function of x
Let us assume

afu *U
SF =U= poraas 4.7)

which is a non-homogeneous fractional differential equation.

Taking Laplace transform on both sides of equation (2) w. r. t. x,

s¥U (5,8) = TRy s* DER1(0,0) =
c c Cn 1
Uls, ) = S+ ot b (4.8)

Taking inverse Laplace transform on both sides of equation (3) w. 1. t. x,

2 n <+1

P u(xt) _a x*1 n cp X%~ R Cp X%~ x
ath Ta M(a-1) F(a-n+1) T'(a+2)

(4.9)

Taking Laplace transform on both sides of equation (4) w. r. t. ¢,
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—k= *-1 x=2 x-n o+
sPu (x,S)—Zﬁ;éskDf k 1(x,0) =1L, {Cllf pexX 2 o L }

a T(a-1) ' ' Ta-n+1) ' T(a+2)
sPu (x,s) — b, —sb, — - —s" b,
1 ¢, xoc—l N cy xo(—z N N Cp XXM N xo(+1
s| Ta [(a—1) " Tla—-n+1) T(a+2)
_ b b, L, by 1 (cgx* 1 ¢y x™2 Cp x*1 xo+1
u(x,s) = sk * sB-1 vl gBon+t + sﬁ+1{ Ta I(a-1) ot I(a-n+1) l"(a+2)}

Taking inverse Laplace transform on both sides of equation (5) w. r. t. ¢,

ulet) = bllf:: : ?z(;;[j; rl();ffwnn + F([t?lj-l) {CI:: 1 f"z(:zc:j + o+ riifz:;) FJ(C::)}

(4.10)
The equation (4.10) solves the given mixed-order partial fractional differential equation
problem (4.6).

Casel]—-c¢;=0,b;=0,1<i<n

tho(+1

ulxt) = T(B+ D (a+2)’

The graphical presentation of (4.10) fora =13 and B = 1.6 is

given in Fig 3.

Fig:3Fora=13and B=1.6 Figd Fora=13and B =1.6

Casell]—c;=0,b; =1,1<i<n
tByxt+1 n tB-k

u () =t s k=1 TGk D

The graphical presentation is in Fig 4.
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Caselll]¢; =t h;=0,1<i<n

+1
thBxx n

tho<—k
r(B+1(a+2) t k=1 I(a—k+1)"

u(x,t) =

The graphical presentation of (4.10) for o =
1.3 and 3 = 1.6 is given in Fig 5.

Fig:5Fora=13and =1.6

Example 3:

*tBuxt)

W =Xx°1 (4 1 1)
With initial conditions

D;“l(O, t) = ¢4, D;“Z(O, t)= ¢y eennsy DF"(0,t) = cp,

and D (x,0) = by, D’ 7*(x,0) = by, ..., DP(x,0) = b,

Let us assume

fu *U

W—Uﬁax‘x —le‘ (412)

which is a non-homogeneous fractional differential equation.

Taking Laplace transform on both sides of equation (2) w. r. t. x,

s*U (s,t) — YRl s® DZ*1(0,8) = £

S3
2t Cc1 Cy L, ¢
U(s, t) = Sars +ST<+S°‘_1 +""|5-oc—Z+1 (4.13)
Taking inverse Laplace transform on both sides of equation (3) w. r. t. x,
AP u(xt) _o2tx%t2 g x*Tl a2 Cpx*T
ath T T(a+3) ra T I(a-1) toed I(a-n+1) (4.14)
Taking Laplace transform on both sides of equation (4) w. 1. t. ¢,
B _yn-1_k pB-k-1 _ 22X 1 {Cl X
sPu (x,s) — Yg=ys* D; (x,0) @i 52 +L; —+
['(a-1) " I(a-n+1)
_ by b, bn 2x%+2 1 {c1 x*-1 Cp X2
uxs)= SB +sB—1 T SB-n+1 © gB+2T(q+3) t SB+1 U ra t M(a-1)
cn xo(—n+1}
T (4.15)
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Taking inverse Laplace transform on both sides of equation (5) w. r. t. ¢,

_ by tPt pytF2 b tF 2x%t2¢B+1 th {cl x*~1
ulnt) = rg + r(g-1) tot r(g-n+1) T (B+2)I'(a+3) + r(g+1) L ra +
Cp x%72 cp XM }
r(a-1) r(a—n+1) (4.16)

The above equation is the solution of the problem (4.11).

Casel]—-c¢;=0,b;=0,1<i<n
2B+ +2

ulnt) = T(B+2)I(@+3)"

The graphical presentation of the surface (4.16) Forao=1.3 and f =

=

1.6 is in Fig 6.

1

Fig:6 Fora=13and =1.6 Fig:7Forao=13and =1.6

Casell]-¢c;=0,b; =1,1<i<n

2t/3+1xo<+2 tB—k

————————————————————— n ——
[(B+2)I(a+3) k=1r(p-k+1)’

=13andB=1.61isin Fig7.

u(x,t) = The graphical presentation of the surface (4.16) for a

Casell]—c; =t,h;=0,1<i<n
2t B+1x+2 tB n

+ thcc—k
r(B+2)F(a+3) = L(B+1) “k=1r(a-k+1)’

u(x,t) =

The graphical presentation of the surface (4.16)
foroo=1.3 and = 1.6 1s in Fig 8.

Fig:8 Fora=13and B=1.6

5. Conclusion:
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This study illustrates the usefulness of the Laplace Substitution Method for solving linear
multivariate fractional differential equations with mixed partial derivatives, especially if the
general linear components are zero, i.e., Ru (x, t) = 0. The study demonstrates that this
technique yields precise and accurate approaches to both homogeneous and non-homogeneous
linear fractional differential equations. In Example 1, the approach is used to a homogeneous
linear fractional differential equation with mixed partial derivatives to demonstrate its ease of
use and effectiveness.

Examples 2 and 3 further validate the method’s applicability to non-homogeneous
equations, showcasing its versatility in handling various problems. To support the findings,
graphical representations of the solutions are presented for specific cases using Maple
Software, providing visual confirmation of the method's accuracy. The Laplace Substitution
Method stands out for its simplicity, requiring fewer calculations compared to other methods
while still delivering exact solutions. It proves to be a reliable and effective tool for solving
complex linear fractional differential equations involving mixed partial derivatives, making it
an invaluable approach in applied mathematics and engineering problems.
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